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Reaction dynamics of a four atom system (HO+ CO) is investigated using the classical trajectory method
and two quantum-classical theories. At 298 K, the new quantum-classical method predicts a rate of 1.49×
10-13 cm3/s, compared to an experimental value of 1.5× 10-13 cm3/s. It also reproduces the unusual temperature
dependence.

1. Introduction

The utilization of quantum-classical methods for the treatment
of molecular dynamics problems, in particular forN-body
systems (withN > 3), for which a full quantal approach is
numerically cumbersome, is extremely attractive because it
attempts to incorporate the most important quantum effects into
a framework which maintains the classical simplicity, both
conceptual and computational, connected to the integration of
the equations of motion. Recently, the quantum theory has been
reformulated in such a manner that these mixed quantum-
classical theories emerge naturally from a certain parametrization
of the time-dependent Schro¨dinger equation.1-9 Here, we use
the theory to study the reaction between HO and CO.

The reaction of carbon monoxide (CO) with the hydroxyl
radical (OH) is the final stage in the oxidation of carbon-
containing compounds by combustion and through atmospheric
photochemistry. This reaction is the principle source of heat in
hydrocarbon flames and, in the atmosphere, the principal sink
of both OH and CO. Accordingly, the reaction has received a
great deal of attention from theorists10-13 and experimentalists14

and is the focus of several reviews.15,16,25The system is unusual
for a bimolecular reaction as the rate constant is relatively
insensitive to temperature; increases with pressure; and shows
large H/D, C, and O isotope effects.15-20 The high-pressure limit
of the reaction rate has not been observed. These observations
are consistent with an indirect mechanism. The reaction
coordinate is complex, involving a saddle point on the entrance
and exit channels (TS1 and TS2) and an intermediate barrier
(TS3). TS1 involves the conversion of the initial hydrogen-
bound complex OH-CO to the intermediate carboxyl radical
species (HOCO).21 There is a large barrier (TS2) for the
hydrogen atom to leave the system. In addition, there is a small
barrier within the intermediate, for the interconversion ofcis-
and trans-HOCO.13

Previous theoretical investigations have ranged from quantum
reduced dimensionality (andJ ) 0) studies22 over quantum-
classical calculations23 to quasiclassical trajectory studies.24 The
reaction is, in the present paper, studied theoretically using two
different quantum-classical theories as well as the so-called
quasiclassical trajectory method. The results are compared with
available experimental data.

2. Theory

The Hamiltonian for a system of two diatoms in a space-
fixed Jacobi coordinate frame, where, for the case investigated

here, r1 and r2 are the vectors of the CO and OH bonds,
respectively, andR is the vector connecting the centers of mass
of the two molecules, can be written as

where the reduced masses are defined as

and the momentum vector for the relative motion is (PX, PY,
PZ) and for the two molecules (pxi, pyi, pzi) (i ) 1,2). The
intermolecular potential can be expressed in terms of six
variables as for instance the atom-atom distancesRij (i * j).
For the isolated system, we introduce two Morse potentialsVM.
The above Hamiltonian can now be used for classical trajectory
studies of the chemical reaction by solving the 18 coupled
equations of motion along trajectories, which are initialized for
molecules in a specific vibrational/rotational state.26 The problem
with a classical treatment of reactions has to do with mainly
two aspects, namely, tunneling and conservation of zero-point
vibrational energy. Both of these problems can be handled by
treating the motion in the r1 and r2 bonds quantally. The
question is then how this quantization should be introduced. In
some of our previous work,9,27 we have solved the classical
dynamics of the remaining degrees of freedom, i.e., all degrees
of freedom except r1 and r2 in an effective mean field potential
over the quantum variables. Another possibility (which is also
used in this paper) is to solve the classical dynamical equations
as in ordinary trajectory calculations, i.e., in the full space, and
the quantum dynamics using the time-dependent Schro¨dinger
equation (TDSE) in r1 and r2 space, i.e.

where
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where the time-dependence of the potential arises from the
dependence of classical variables. We have also used this
method in the present paper. The results are denoted “2D
quantum-classical”, but we emphasize that although this pro-
cedure looks physically sound it is ad hoc.

If we wish to solve the classical dynamics in itsfull
dimensionality for a given system, what then are the quantum
mechanical equations which consistently go along with that
solution? This important question has recently found its solution
by the time-dependent Gauss-Hermite discrete variable rep-
resentation (TDGH-DVR) method as formulated in refs 1-9.
Below, we shall briefly repeat the main features of this new
dynamical theory.

2.1. TDGH-DVR Formulation. In the TDGH-DVR method,6

the wave function for the system, which in Jacobi coordinates
will be of dimension 9, is expanded in the Gauss-Hermite basis
set.1 If this expansion is inserted in the TDSE, we generate the
classical equations of motion for the nine degrees of freedom.
Aside from these equations of motion, we obtain a large matrix
equation in the Gauss-Hermite basis representation. Instead of
solving these, we can switch to a discrete variable representation
(DVR). This procedure yields a set of equations, now involving
the amplitudes for the specific DVR points. The DVR is by
construction defined to follow the classical trajectories in space.
Furthermore one grid point in a given dimension corresponds
to a classical treatment of it. With many grid points we approach
the quantum limit. The idea then in the present calculations is
to use one grid point in all degrees of freedom except r1 and r2.
For the spectator bond r1 ) rCO we can use a modest number
of points,9 whereas the bond which breaks requires more DVR
points for a proper description. Because one grid point corre-
sponds to a classical treatment, we shall illustrate the derivation
by considering just the two degrees of freedom treated with
more than one grid point, i.e., instead of giving the derivation
in nine dimensions, we give it in two. However, we emphasize
that the final equations are those which would come out of a
nine-dimensional formulation assuming then afterward only one
grid point in seven of the dimensions!

Thus, the wave functionΨ(r1, r2, t) is first expanded in the
Gauss-Hermite basis set as

whereΦnk(rk, t) is

with k ) 1 and 2 and

whereHnk(êk) is an Hermite polynomial and

Thus, rk(t) is the center of the wave packet in rk, which, in its
ground state, i.e., whennk ) 0, is a Gaussian wave packet. The
basis set is also characterized by a momentum parameterpk(t),
by a width parameterAk(t), and by a phaseγk(t).

N1 andN2 are the highest index of the Hermite polynomials
used in r1 and r2, respectively, and thus, they represent the
number of grid points in each quantum degree of freedom in
the DVR approach. In this way the grid points in thekth degree
of freedom are determined by the number of zeroes of theNkth
Hermite polynomial, and their position is not fixed in time, but
it varies as a function of the time dependent variables ImAk(t)
and rk(t), being

for the i-th grid point, wherezi is the i-th zero of the Hermite
polynomial of orderNk.

To introduce the DVR representation, we use the following
relation:

wherezi are grid points of the Hermite polynomial, i.e.,HNk(zi)
) 0. The DVR basis functions are orthorgonal:4-6

whereSk is defined as

By inserting the above expansion (12) into the TDSE, we obtain
the following set of differential equations for the center of the
trajectory rk(t), the momentumpk(t), the width Ak(t), and the
phaseγk(t):

whereV′eff,k andV′′eff,k are effective forces which can be derived
on general grounds using the Dirac-Frenkel variational prin-
ciple.1,2 However, because the solution of the problem is
independent of the forces (only the convergence pattern is
affected), we can choose to use the leading terms of these forces,
which (see ref 2) are the classical forces. Thus, for the first
derivative, we useV′eff,k ) (∂/∂r k)Veff where

can easily be obtained because the derivatives∂V/∂xk, etc., are
used in the classical equations of motion. Equations 15 and 16
show that the center of the packet moves as a classical trajectory.
If in addition the second derivative is taken asV′′eff,k ) (∂2/∂rk

2)-
Veff, not only do the grid point positions vary with time, as
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mentioned before, but also the grid spacings, being a function
of Ak(t). In some cases, the equations of motion can lead to
large values of ImAk(t). Thus, to prevent the grid points from
collapsing in a very narrow region, an approach where ImAk(t)
is constant can be introduced. This fixed-width treatment is
achieved by setting

instead of the second derivative of the potential.
Together with the 18 classical equations of motion in Jacobi

coordinates, the following set of equations for the expansion
coefficient is obtained:1,2

where

If we now use

and put eq 12 into eq 21, we get the coupled equations in the
DVR framework as

where

Thus the potential matrix is diagonal and the kinetic energy
terms are block diagonal, so that the matrix which couples the
grid points is sparse, which makes it particularly convenient to
use the Lanczos method to propagate eq 24.

In this section, we have given the quantum mechanical
equations of motion (24), which are consistent to solve if one
wants to introduce quantum corrections to the classical dynami-
cal ones. Once these equations have been obtained, we can solve
the classical dynamics using for instance Jacobi coordinates.
All we need to do is to calculate the classical forces∂V/∂ri and
use these forces for the effective onesV′eff,i in the definition of
the potential matrix elementsW. So the recipe is the following:

(1) Set up the classical equations of motion in the coordinate
system of choice.

(2) Decide upon the degrees of freedom which should have
more than one grid point. This choice defines the quantum
degrees of freedom.

(3) Calculate the classical Newton force for the quantum
degrees of freedom.

(4) Use these forces together with the fixed width forcesV′′eff,i

to obtainW at the DVR points.
(5) Propagate the classical and quantum equations of motion.

3. Initialization and Analysis

The initialization of the classical variables was carried out
as in ref 9; that is, random values of impact parameter (orbital
angular momentum), rotational angular momenta, corresponding
angles, as well as the orientation of the two molecules are
chosen. The initial distanceR(t0) was taken to be sufficiently
large that the interaction potential becomes negligible.

Concerning the initialization of the quantum wave packet,
the initial wave function is taken as the product of two Morse
oscillator wave functions representing the vibrations of the two
molecules:

To obtain the initial expansion coefficientsdij(t0), we need
to project the initial wave function (27) onto the Gauss-Hermite
functions:

The dynamical evolution of the system in time is thus studied
by simultaneously propagating the equations of motion for
classical variables, integrated together with the differential
equation 24 for thedij ’s. In practice, for each time step∆t, the
equations of the classical variables have been propagated with
a predictor-corrector method, whereas for eq 24 a Lanczos
procedure has been used. The accuracy of the integration
procedure can be verified by checking the conservation of the
norm of the wave function, of the total energy, and of the total
angular momentum.

Each trajectory obtained through the dynamical propagation
of the system can be nonreactive or reactive or, unlike pure
classical trajectory methods, only part of the wave packet can
react. Thus, we can obtain information on probabilities for the
reactive event or for inelastic scattering. As a matter of fact, as
shown in refs 5 and 6,|dij|2 represents the probability of being
at the grid pointi in r1 and j in r2. To have the reaction
probabilityP(t) then, it is sufficient to sum over those grid points
for which r2 g r2*, i.e., where the OH bond can be considered
as broken:

Within this approach, it is not necessary to insert an absorbing
potential as we do in ordinary grid methods (see ref 9), provided
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that the number of grid points employed is sufficient to follow
the dynamics.

Note that as the grid moves the grid pointj* corresponding
to r2* is not fixed but moves in time. As for a mixed quantum
classical method, for each trajectory, the probabilityP(t) is not
necessary an integer, as is the case in classical mechanics where
the only two possibilities are that of a non reactive event (P(t)
) 0) or of a completely reactive collision (P(t) ) 1). Once the
probability of reaction is defined, we can obtain the reaction
cross section and the rate constant. The rate constant is defined
as28

HereE is the total energy,E - En1n2 ) Ecl is the sum of kinetic,
rotational and vibrational energy of both molecules, andT0 is
an arbitrary reference temperature.〈σR〉 is the so-called average
cross section for the reaction, defined by

This sum is evaluated using a Monte Carlo sampling technique.
The initial rotational angular momenta, orbital angular momen-
tum, and orientation of the diatomic molecules in space are
chosen randomly. The reaction probability for a given trajectory
is given asPd and determined by eq 29 fort f ∞. The average
cross section〈σR〉 (not to be confused with the reaction cross
section!) has been calculated at a number of energiesEcl, the
sum of the kinetic and rotational energies of both molecules
(see below).

Calculations

The total reaction cross sections were computed at 15 distinct
values of the energyEcl in the range of 2.5-2000 kJ/mol. The
cross sections were estimated using logarithmic interpolation
between the 15 energies and extrapolation to energies below
2.5 kJ/mol when computing the rate-constant using eq 30.
Because of formation of collision complexes, the cross sections
are expensive to evaluate in the low energy region. The cross
sections〈σR〉 were evaluated using the “2D quantum-classical”
method as well as the TDGH-DVR method. The results of
purely classical trajectories are also reported for comparison.
The potential energy surface for the HO-CO system was that
of Schatz et al.12 The grid size used for the 2D quantum-classical
method was (64:128); this was reduced to (21:129) for the
TDGH-DVR method to reduce computation time. However, this
did not affect convergence. The two methods are different in
several respects. In the 2D quantum-classical method, a fixed
grid with absorbing boundary conditions was used. In the
TDGH-DVR method, the grid follows the trajectory in space.
The parameters used in the calculations are given in Table 1.

We have in Figure 1 shown the wave packet evolve in time.
We notice that part of the wave packet stays in the reactive
region (large value ofr2) even when the collision trajectory is
nonreactive. The reason for this is that with 129 grid points
aroundr2(t) we cover the reactive region, even if the trajectory
is nonreactive.

The average cross sections at some of the lower energies are
given in Table 2.

For energies below 200 kJ/mol, 1000 trajectories were
evaluated to ensure convergence of the average reaction cross
sections to less than 10%; however, at higher energies, 200
trajectories were sufficient. Energies greater than 700 kJ/mol
required the maximum impact parameter,bmax, to be augmented
from 3 to 4 Å.

The initial separation of the centers of mass of the two
reactants was set to 7 Å, at which distance the interaction
potential is negligible. We notice that the average cross sections
obtained with the 2D quantum-classical method are much larger
(at low energies) when compared to the numbers obtained with
the TDGH-DVR method. The classical trajectories underesti-
mate the cross sections at 5 kJ/mol, because of the lack of
tunneling possibility in this theory.

The lifetime, τ, of the HOCO radical complex was also
estimated from the duration of the collisiont and the initial
kinetic energy of each trajectory:

whereR0 is the initial separation of the reacting species andVR

is the velocity along the center of mass coordinate.t is the
duration of the trajectory, andtcoll is the time required by the
reactants to travel the distance 2R0 without the interaction
potential. The difference is the duration of time that the reactants
exist as a complex. Trajectories for whichtcoll g t were
nonreactive as no complex was formed. The average lifetimes
at Ecl ) 5 andE ) 10 kJ/mol were found to be 2942 and 1707
fs, respectively, confirming that a long-lived complex is formed
at low energies during the reaction. These numbers are in good
agreement with earlier estimates, which at somewhat higher
energies are around and less than 1 ps.23,24

Experimentally, the rate of reaction of carbon monoxide with
the hydroxyl radical has been studied extensively at and around
298 K.25,29The low-pressure limit rate constant for this reaction
is 1.5× 10-13 cm-3 s-1 at 298 K, and several studies25 have
concluded that it is practically constant in the temperature range
200-400 K. This non-Arrhenius temperature dependence is
characteristic of complex-forming bimolecular reactions. This
agrees well with the calculations presented in this work; the
new TDGH-DVR method predicts a rate constant at 298 K of
1.49× 10-13 cm-3 s-1with a standard deviation of (σ ) 0.25
× 10-13). Our calculated rate constant is also nearly invariant
in the range 100-350 K, see Figure 2. At low temperatures,

k(T) ) x8kBT/πµ(T0/T)3∫0

∞
d(âE)

exp(-(E - En1n2
)/kBT) 〈σR〉 (30)

〈σR〉 )
πp6

8µI1I2(kBT0)
3
∑
j1

j 1
max

∑
j2

j2
max

∑
l)0

lmax

(2j1 + 1)(2j2 + 1)(2l + 1)Pd

(31)

TABLE 1: Parameters Used in the Calculationsa

value

parameter
2D

quantum-classical TDGH-DVR

bmax/Å 3 3
DOH(100 kJ/mol) 4.4586 4.4586
DCO(100 kJ/mol) 10.8314 10.8314
âOH/Å-1 2.2962 2.2962
âCO/Å-1 2.2996 2.2996
r 1 (CO)/Å 1.1283 1.1283
r 2 (OH)/Å 0.9696 0.9696
r proj/Å 2.9 2.9
Nr1 64 21
Nr2 128 129
(r1min, r1max,∆r1)/Å 0, 2, 0.031 0.686, 1.5706, 0.042
(r2min, r2max,∆r2)/Å 0, 5, 0.039 -2.09, 4.029, 0.047
R0/Å 7.0 7.0

a Both the CO and the OH molecule were initially in the vibrational
ground state.Nr1 andNr2 are the number of grid points alongr 1 andr 1.
R0 is the initial separation of the centers of mass.

τ ) t - tcoll ) t -
2R0

VR
(32)
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there are relatively few available experimental data. One study30

reports rate constants for the reaction from 296 K down to near
liquid nitrogen temperature at 80 K. These values are indicated
in Figure 3 at 178, 138, and 80 K and are in good agreement
with the TDGH-DVR calculations. Another study by Fulle et
al.14 reports rate constants at 137 and 91 K that are also in good
agreement with the TDGH-DVR (see Figure 2). At higher

temperatures, the difference between the quantum-classical and
the quasiclassical rates become small.

A recent study by Golden et al.14 sums up the available high-
temperature rate data for the reaction (400-3000 K), these
values follow the same trend as our calculated rate data even if
they are generally lower. At high temperatures (combustion
conditions), experimental error is relatively larger14 than at
intermediate temperatures, as the kinetic studies usually employ

Figure 1. Wave packet which is initially a product of two Morse oscillator functions in the OC and OH bond located around the equilibrium
distances. At later times, the packet moves on the DVR grid, and the figure shows that the amplitude is building up at large values of the OH bond,
indicating that a chemical reaction has taken place. The reaction probability is obtained as the grid summed total squared amplitude forrOH bond
lengths exceeding a 2.9 Å.

TABLE 2: Total Average Reaction Cross Sections〈σR〉, Å2 eq 31, Calculated for the Classical and Quantum-Classical
Trajectoriesa

Ecl

(100 kJ/mol)
σ,

classical
σ,

2D quantum-classical
σ,

TDGH-DVR

0.05 2.5× 10-5((2.5× 10-6) 0.3 ((3 × 10-2) 2 × 10-2 ((2 × 10-3)
0.1 0.55 ((0.03) 1.4 ((0.018) 0.25 ((0.02)
0.2 5 ((0.3) 14 ((1) 2 ((0.1)
0.3 4 ((0.2) 44 ((3) 8 ((0.2)
0.4 10 ((1.2) 88 ((7) 31 ((3)
0.5 82 ((5) 164 ((6) 268 ((13)
1 2224 ((170) 2371 ((130) 3450 ((120)
2 60 000 ((2800) 65 000 ((3520) 60 700 ((2640)

a Errors correspond to one mean standard deviation.

Figure 2. Rate constant,k, for the reaction CO+ OH as a function of
temperature. The rates calculated using a 2D quantum-classical method
and the new TDGH-DVR method are compared to a purely classical
method and experimental data. The experimental data are taken from
refs 14, 15, 25, 29, and 30

Figure 3. Rate constant of the reaction of CO with OH in the
temperature range 100-350 K. The experimental data are taken from
refs 14, 15, 25, 29, and 30.
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indirect methods and often probe the reverse reaction, CO2 +
H f CO + OH.
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